difference is due to dipolar coupling). system if the spins are parallel or antiparallel (a priori classically the only **<u>Aim:</u>** Calculate the Exchange Energy, i.e. the energy of a two electron

$$\mathcal{H} = J * \hat{S}^a \cdot \hat{S}^b$$

Calculate Sà Sò (Quantum mechanical interlude chapter 2.2.1)

Calculate J (chapter 2.3)

Path:

2.2.1.1-2.2.1.3 Quantum Mechanical Interlude:

- -For Fermions the total wave function is antisymmetric
- (spatial wave function * spin wave function)
- -Calculate -Spin wave function is constructed using Spinor representation Ŝa Ŝb for electrons with spin 1/2
- -Two spin wave functions are found:
- Singlet state (antiparallel) and
- triplet state (parallel and three times degenerate)
- Combine spin wave function with spatial wave function

Path
2.3 Calculate Exchange interaction:
-Parametrize the difference in energy between the parallel and antiparallel alignment
-Obtain relation for $J =$ depending on the spatial wave functions of both electrons.
Main result:
We can calculate the difference between the state for parallel and antiparallel alignment:
This is then used in the micromagnetic model as the Heisenberg