
2 Coupled magnetic moments 
 
 Coupling between individual magnetic moments allows 

for a magnetically ordered state: 
 

- Ferromagnetism 
 

 In these cases there is the presence of a collective long 
range order of the permanent magnetic moments in a 
solid-state body. 
 

 Characteristics: 
- Spontaneous orientation of the moments, so breaking 

of the rotational invariance symmetry. 
- The susceptibility χ = μ0·M/B is divergent for B → 0, 

because M ≠ 0 in the ordered state (ferromagnet). 
- The relation between the magnetic induction  

B = B0 + μ0M(B0) and the external field B0 is 
nonlinear. 

- The temperature dependence of the magnetic order is 
given by the competing behavior of the order due to 
coupling and disorder due to thermal energy. 

- Dirac19 and Heisenberg20: the quantum mechanical 
exchange interaction is the origin of collective 
magnetic order. 
 

[12] Paul DIRAC (1902-1984), English physicist 

[13] Werner HEISENBERG (1901-1976), German physicist 



2.1 Dipole-dipole interaction 
 
 The dipole-dipole interaction is the interaction of two 

magnetic dipole moments μk and μl at distance rkl.  
 

 
Figure: Dipole-dipole interaction 

 
 The magnetostatic interaction energy is:  
 

 
 

  



 In comparison to the quantum mechanical exchange 
interaction which will be dealt with in the following 
chapter, the magnetic dipole-dipole interaction is very 
small.  

 
 See exercise  

 
  



2.2 Direct exchange interaction 
 
 To cause a long range magnetic order, the individual 

magnetic moments in a solid-state body need to couple.  
The coupling is mediated by the electrons themselves. 
 

 Since the electrons are Fermions the many body wave 
function obeys the antisymmetry principle, so if two 
electrons are swapped the wave function changes sign. 

 
 If the wave function is represented as a product of the 

spatial and spin wave functions, then only combinations 
of… 

 
… symmetric spatial function with an antisymmetric spin  

function 
… antisymmetric spatial function with a symmetric spin  

function 
 

is allowed. 
 
  



2.2.1 Quantum mechanical interlude 
2.2.1.1 Wave function of N identical particles 
(for instance electrons) 
 
 The Hamilton operator H = H (1,2,…,N) is symmetric in 

variables 1, 2,….  Here 1 stands for x1, χ1, which means 
the spatial and spin degrees of freedom.  

 
 The wave function is then ψ = ψ(1,2,…,N).  
 
 The permutation operator Pij swaps i and j:  
 

 
 
 With , so from this the eigenvalues of ±1 follow.  
 
  



 Since identical particles are influenced identically by any 
external influence, all physical operators are symmetric: 
ψ(1,2,…,N) and Pψ(1,2,…,N) cannot be distinguished.  

 
 One asks oneself if all states in nature are realized.  For 

this we consider completely symmetric and completely 
antisymmetric states:  
  
 
 
 

 For two particles:  
 

 
 

 
 In the case of N identical non-interacting particles, the 

Hamilton operator H can be written as the sum of N 
identical single particle Hamilton operators H (i):  

 
 

 
  



 From the solution of the single particle Schrödinger 
equation:  

 
 
 

 
 The product states:  
 

 
 
 Are formed as eigenstates of H with energy eigenvalues:  
 

 
 
 But the states are neither symmetric nor antisymmetric.   

 
  



 The antisymmetric wave function for two fermions is:  
 

 
 

 
 Respectively for N particles:  
 

 
 
 
 
 

 
 The determinant of single particle states is called the 

Slater21 determinant.  
 
 It follows the Pauli principle; the prefactor guarantees 

the normalization of the wave function.  
 
 Antisymmetry is given since the swapping of two 

columns yields a change in the determinant by a factor 
of -1.  

 
[21] John Clarke SLATER (1900-1976), American physicist 
 
  



2.2.1.2 Pauli matrices and spinors 
 
 The description of the electron spins is based on the 

three Pauli matrices:  
 
 
 
 
 

 
 

 
 The definition of the spin moment operator:  
 

 
 
 

 
 
 Convention: presentation in units of ħ (multiplying).  
 
  



 Only  is diagonal.  (The description is simple, if the 
spin is oriented along the z direction.)  

 
 The eigenvalues of  are ms = ± ½.  The accompanying 

eigenstates are:  
 

 
 
  



 The spin of the electrons is therefore oriented parallel or 
antiparallel to the z-axis:  

 
 
 
 

 
 The eigenstates for spin orientation parallel or 

antiparallel to the x- and y-axes are:  
 

 
 

 
 

 

 The two component description of the spin wave function 
is called spinor representation, and the respective 
eigenstates are called spinors.  
 

 

 The general state is given by:  
 
 

 
 

(with |a|2 + |b|2 = 1 and a, b complex) 



 We define the total spin operator : 
 

 
 
 
 

 
 Here i, j and k are the Cartesian unit vectors.  
 
 For the  operator . 
 
 The eigenvalues of are: 
 
 
 

 
 
 For every spin state : 
 
 
 
 
 
 Generalizing this for spin quantum numbers larger than 

½ one obtains as the eigenvalues for : 
 
 
 



 And the commutator relation is given by:  
 

 
 

 
 More than one component of  is not measurable 

simultaneously.  But every one of the operators 
commutes with , so: 

 
 
 

 
 The total spin as well as one component can be 

determined simultaneously.   



2.2.1.3 Coupling of two spins (singlet and triplet 
state) 
 
 The Hamilton operator of two coupled spin ½ particles 

(type of coupling is arbitrary) is:  
 

 
 

 
 Here  and  are spin operators.  
 
 The total spin operator has the form:  
 

 
 

 
 The spin quantum numbers of two coupled spin ½ 

particles are S = 0 and S = 1.  
 
  



 The eigenvalues of  correspond to S(S + 1), so 0 
for S = 0 and 2 for S = 1; the eigenvalues of  and  

are ¾. 
 
 So with this we obtain:  
 

 

 

 

 
 
 From the previously defined Hamilton operator for two 

interacting spin ½ particles one obtains for the energy 
eigenvalues for S = 0 and S = 1:  

 
 
 

 



 
Figure: Energy eigenvalues for S = 0 and 1 

 
 The states are (2S + 1) times degenerate:  
 

S = 0 corresponds to singlet state 
S = 1 corresponds to triplet state 

 
 The z components of the triplet states are:  
 

 
 

 
 And the z component of the singlet states are:  
 

 
 



 In addition to the eigenvalues of  the eigenstates 
are of course important.  Its basis given by:  

 

 
 
 ↑ designates the z component of the spin.  
 
 The eigenstates of  are linear combinations of the 

above mentioned basis states.  
  

 
Figure: Eingenstates of  and the associated 

eigenvalues of ms, s as well as the eigenvalues of  
 
 The basis states do not obey the requirement for 

antisymmetry for the exchange of two electrons. 
 



 The total wave function is a product of the spatial wave 
function ψ(r1,r2) and the spin wave function χ.  

 
 χ is a linear combination of the above mentioned basis 

states.  
 

 The spatial wave function (of two spin ½ particles) is:  
 

 
 
 

 
 Here + is the symmetric and – the antisymmetric spatial 

wave function; φ(ri) and Φ(ri) are the single particle 
wave functions of the ith electron.  

 
  



 The symmetry of the spin function χ has to be chosen so 
that the total wave function becomes antisymmetric:  

 

 and : symmetric 

 and : neither symmetric nor antisymmetric 
 

 
Figure: Wave function and the associated square of the 
amplitude; triplet state (left) and singlet state (right); in 
the triplet state the spin ½ particles are strongly localized 

at the nuclei 
 

Note: swapping the electrons for the state  yields , 
which is not a multiple of . 
 
  



 With this we have:  
 

 
 
 
 
 

 
 Now we investigate the Pauli principle. For two 

electrons with identical spatial and spin wave functions 
(for example both spin up) the spatial wave function has 
to be antisymmetric since the spin wave function is 
symmetric:  

 
 

 
  



2.3 Continuation: the exchange interaction 
 
 The exchange interaction is nothing but the combination 

of the Coulomb interaction and the Pauli principle.  
 
 We stay with the model systems, two electrons with 

positions r1 and r2.  The total wave function, as shown in 
the quantum mechanical interlude is given by:  

 
 
 
 

 
for the singlet state S = 0  
and:  
 

 
 
 
 

 
for the triplet state S = 1.  The total wave function is 
antisymmetric!  
 
  



 We consider the energy of the possible states. For the 
singlet state we find:  

 
 
 
 

 
 And for the multiplet state we find:  
 

 
 

 
Note: the spin wave functions are normalized. 
 
 The energy difference between a singlet and triplet state 

is given by:  
 

 
 
 

 This energy difference can be parameterized using S1·S2.  
In the quantum mechanical interlude we found that:  

 
 

 
  



 The Hamilton operator can then be rewritten as:  
 

 
 

 
1st part: constant, can be included in other energy terms. 

2nd part: depends on the spin orientation. 
 
 We test these by entering for S1·S2 the value -¾, so:  
 

 
 

 
 Similarly we enter for S1·S2 the value ¼ and we obtain:  
 

 
 
  



 A comparison of the energy difference between triplet 
and singlet states and the parameterized Hamilton 

operator  yields the exchange constant, respectively 
the exchange integral J:  

 
 
 

 
 From this the spin dependent term and effective 

Hamiltonian follow:  
 

 
 
 

 
 In the case of J > 0 one finds ES > ET, so S = 1, so 

triplet state energetically favourable (ferromagnetism).  
 
 In the case of J < 0 one finds ES < ET, so S = 0, so 

singlet state energetically favourable 
(antiferromagnetism).  

 
 This is relatively simple for a two particle system, but 

very difficult for a generalized multiparticle system.  
 
  



 The limitation to nearest neighbor interaction yields as 
the Hamilton operator in the Heisenberg model (localized 
spin system):  

 
 
 

 
 Jij is now the exchange integral between the ith and the 

jth spin. The factor 2 is removed to avoid double 
counting.  

 
 Alternatively, one could write:  
 

 
 

 
Note 1: both electrons are of the same atom, so the 
exchange integral is typically positive and the triplet state 
is energetically favourable. The spatial wave function is 
then antisymmetric, so that the Coulomb energy is 
minimized by spatially separating the electrons (compare 
with 1st Hund rule). 
 
Note 2: if the electrons considered belong to neighbouring 
atoms, the total wave function is a combination of the 
appropriate single state wave functions. The localized 
states are localized at the atoms considered. 
 



 We consider the energy situation with an electron in a 
one dimensional box: the energy is proportional to  
and can be considered as kinetic energy.  

 
 The presence in a very small box (with small L) costs a 

large contribution to kinetic energy.  
 
 By forming bonds which allow the electrons to move 

beyond the lateral extent of a single system, the kinetic 
energy is reduced.  

 
 The associated molecular orbitals are the bonding 

(spatially symmetric) and antibonding (spatially 
antisymmetric) orbitals: the antibonding orbitals are 
localized more strongly at single atoms, which means 
they cost most kinetic energy.  

 
 So a symmetric spatial wave function and an 

antisymmetric spin function (singlet state) are favoured.  
 

 



 
Figure: Binding energy as a function of the distance; 

binding singlet state (S) and antibinding triplet state (A) 


