
3.0 Micromagnetics - a model to 
describe magnetization 
3.0.1Examples of inhomogeneous magnetization 
 
 So far, primarily microscopic models for the exchange 

interaction have been dealt with.  
→ All spins are preferentially aligned parallel. 

 
 But we have found experimentally that there are 

inhomogeneous magnetization configurations, why?  
 
 In addition to exchange energy, other energy terms are 

important, such as the anisotropies that already 
appeared in the course!  

 

 

 
Figure: Inhomogeneous magnetization configurations 



 Not only do inhomogeneous magnetization configurations 
exist, but different configurations can exist even in a 
given geometry (for instance discs). 
→ History of the system is important.  

 
Goal: model for the description of inhomogeneous 
magnetization and changes of the magnetization. 
 
 Apart from an understanding of the physics, such 

inhomogeneous configurations are also important for 
applications (hard drives, etc.)!  

 

 
Figure: Different magnetization configurations in the same 

geometry (disc) 
 
  



3.0.2 Thermodynamics background 
 
 2nd law of thermodynamics: in equilibrium the entropy  

S = lnW will be maximized.  
 
 This holds in closed systems.  
 
 Experimentally one usually deals with open systems.  
 
→ Equilibrium is described by the extremum of the  

 appropriate thermodynamic potential! 
 
Example: system in temperature bath → T = const.  
 
→ Total entropy of the system + temperature bath is  

 maximum when the free energy of the system  
 F = U – TS is minimum. 

 
  



 A magnetic system in a temperature bath:  
 
 Which potential describes the equilibrium?  
 
 1st law of thermodynamics:  
 

 
 
 
 

 Take V = constant, N = constant:  
 

 
 
→ Gibbs free energy is the appropriate potential:  
 

 
 
In equilibrium G has a minimum!  This means that 
for equilibrium states one needs to determine the 
magnetization configuration that minimizes G! 
 
  



3.0.3 Energy terms in the micromagnetic 
approximation 
 
 Let T = 0 (we neglect temperature effects, which will be 

dealt with in section 5.6.12).  
 
 Gibbs free energy: G = U – VB0M should be minimized.  
 
 If there is an inhomogeneous magnetization 

configuration M: M = M(r), then G has to depend on the 
magnetization configuration M: G = G(M).  

 
 What does G look like exactly (sometimes called 

Landau free energy GL), so one can calculate it?  
 
 So far we have used discrete magnetic moments and so 

one obtains the total energy as a sum over the energy of 
all the spins.  

 
→ Difficult to calculate, because for analytical solutions one  

 would prefer to use continuous systems (calculus of  
 continuous functions is easier than for discrete ones).  

 
  



 Micromagnetic approximation (is used, for instance, 
to describe low-dimensional systems such as thin films):  

 
 M = M(r) is a continuous function of the position 

(vector field).  
 
Example:  
 

 
Figure: Magnetization configuration 

 
Mx(r), My(r) ? 
 
 
 
 
 
 
 
 
 
 
 
 Micromagnetic approximation is a valid approximation if:  
 

i.) System size >> atomic distance (no effects due to 
discrete nature of atoms and electrons). 

ii.) Quantum effects do not play a role, M is classical 
vector. 

iii.) T << TC since |M| = Ms = constant  



Summary Energy Terms: 
 

 
 
 Thermodynamics: Gibbs free energy G as the sum of 

Zeeman, Exchange, Anisotropy, Dipolar, 
Magnetostriction, Stress is minimized in equilibrium.  

 
Further Outlook: 
 

1. Calculate Energy Terms for a given magnetization 
configuration 

2. Find static magnetization configuration that has 
minimum energy 

3. Calculate dynamics of changes of the magnetization 
configuration when fields are applied or currents 
injects 

 
All this is generally possible for small elements, which are 
usually found at surfaces, where special energy terms play 
a role (surface anisotropy, etc.). 
 
 First learn something about surface science! 
Use the knowledge to calculate the energy terms! 
 
 
  



3.1 Zeeman energy 
 

 
 
(For inhomogeneous magnetization M; B0: Zeeman term) 

 
 Description: The Zeeman term describes the energy of 

magnetic dipoles in an external homogeneous field (see 
section 2.1). 

 
 Micromagnetic approximation: For an inhomogeneous 

magnetization vector field M = M(r) we find the integral 
over the volume (transition from the sum of discrete 
spins to the integral of the continuous magnetization): 

 

 
  
 

 
 
 Properties: In a homogeneous external field B0 the 

Zeeman energy only depends on the average 
magnetization!  

  



3.2 Exchange energy 
 

 
 

 In the intrinsic energy U more energy terms are hidden, 
such as the exchange energy, which also depends on the 
magnetization configuration M:  

 
U(M) = Exchange(M) + … 

 

 
Figure: Different exchange energy for the same average 

magnetization 
 
 Description: The exchange term describes the exchange 

interaction between neighbouring magnetic moments.  
 

  



 Derivation: Heisenberg model for discrete spins (see 
chapter 4):  

 
Quantum mechanical: 

 
 
 
 

 
Classical: 

 
 
 
 
 

 
Jij > 0 → ferromagnet,  

 Jij < 0 → antiferromagnet,    (*) 
 Jij ≠ 0 for neighbours and possibly next neighbours 
 
  



 Micromagnetic Approximation: Transition from a sum of 
discrete spins to the integral of the continuous 
magnetization:  
 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 Assumption: Change of direction from one spin to the 

next is small.  
 
→ Continuous magnetization can be expanded into a  

 Taylor series. 
 
 
 

 
 With A = cJ/2a, c depends on the crystal structure 

(number of neighbours, etc. For a cubic crystal (sc 
crystal structure) we have c = 1, for bcc: c = 2, for fcc: 
c = 4).  



 
 
 Properties:  
 

- Very short ranged (mostly only next neighbour). 
- Increases as soon as there is inhomogeneous  

magnetization. 
- Mostly isotropic. 
- Strength: >10 Tesla (field that is necessary to align the  
   spin antiparallel). 

 
  



3.3 Magnetic anisotropy energy 
 

U(M) = EExchange(M) + EAniso(M)… 
 
 Description: Spin-orbit-coupling → preferred 

orientations/directions in some systems.  
 

The dependence of the anisotropy energy on the 
direction of the magnetization can be described 
phenomenologically. 

 

 Derivation: Spin – orbit coupling favouring certain 
magnetocrystalline directions. 
 

 Micromagnetic Approximation:  
Transition from the sum of the spins to the integral over 
M: 
 

 
 

In 2 dimensions (Θ = angle of the magnetization 
direction in the plane): 

 



3.4 Stray field energy 
 

 
Figure: a) stray-field of a dipole, b) interaction between 

two dipoles 
 

U(M) = EExchange(M) + EAniso(M) + Ed(M)… 
 
 Description: The stray field term describes the energy of 

the magnetostatic interaction of dipoles via the 
magnetostatic field.  

 
 
 
 Energy of a second dipole in this field:  
 

 
 
 
 
 

 



 
 Micromagnetic approximation: Transition from discrete 

spins to the continuous magnetization:  
 

 In a solid:  (Maxwell Equation) 
 
→ Without external field:  

 
Energy of the stray field/self-energy of the 
magnetization in its field:  

 
 
 
 
 
 

 
 Calculation of stray fields:  
 

 
 
 
 

 
 Analogous to the calculation of the electrical field of a 

charge distribution.  
 

Volume charges: , surface charges:  
 
 Most often the integral for Hd is difficult to calculate 

analytically.  



 

 
Figure: “Volume charges”  (left), “surface charges” 

 (right) 
    
  



 
 
 

 

 
 
 Why is the left configuration ………………………….. than the 

right ones even though it has volume charges but no 
surface charges?  

  



 If one calculates:  
 

 
 
 

And in particular the first integral over Hd
2 over the 

whole space, one sees that for a configuration such as 
the one on the left, Hd exists only locally at the structure. 
 
If one uses the far field approximation then the stray 
field is zero in the far field and the total integral is small. 

 
 For the other two magnetization configurations one finds 

in the far field a dipolar field that drops off only slowly, 
which means the integral over the whole space is large!  

 
  



3.5 Summary of the energy terms: 
 

 
 
 Summary:  
 
 Thermodynamics: Gibbs free energy G is minimized in 

equilibrium.  
 
 Micromagnetic approximation: transition from discrete 

spins to continuous magnetization M(r).  
 
 Partner-task: Draw for each energy term an 

energetically favourable and unfavourable 
magnetization configuration.  

 
  



3.6 Stoner-Wohlfarth model for single domain 
(monodomain) systems 
 
 Simplest case of a system, in which all spins are oriented 

parallel.  
 

 Realistic for which geometries?  
 
 Scaling of energy terms: What happens with the energy-

terms, if one scales down a given magnetization 
configuration?  

 

 
Figure: Reduction (scaling) of lateral sizes x → x’ = b*x 

 
 Apart from the exchange energy, all energy terms are 

scale invariant (energy proportions are size 
independent).  

 



3.7 Overview of Magnetism on different Scales 

 

Large macroscopic 
systems: 
Surfaces and edges 
do not play a role. 
Magnetization is 
homogeneously 
oriented (minimizing 
exchange energy). 
Defects often lead to 
chaotic 
inhomogeneous 
magnetization. 

Mesoskopic Systems 
(>nm; <mm): Surfaces and edges govern the  
magnetization, which minimizes the stray field --> 
magnetization configuration is governed by the geometry. 
·Microscopic systems: 
Sclaing of the exchange energy dominates. The 
magnetization is homogeneous and independent of the 
geometry. Ultimately small are single molecular magnets  
 (details magnetism lecture course).



4 Micromagnetism in inhomogeneous 
systems 
 
Imaging of the magnetization configuration shows 
inhomogeneous magnetization (in particular along the 
edges).  
 
→ Stoner-Wohlfarth theory not applicable! 
 

 With which model does one describe such 
inhomogeneous M?  
 

 Why does such an inhomogeneous magnetization 
configuration form?  

 

 
Figure: Magnetization configuration in an ellipsoid in a 

single domain state; the magnetization bends at the edges 
  



4.1 Energy term and inhomogeneous M 
 
 Which energy terms are reduced due to inhomogeneous 

magnetization?  
 
 Zeeman energy? No!  

 
 

 
 Exchange energy? No!  
 

 
 

 
 Anisotropy energy? No!  
 

 
 

 
 Stray field energy? Yes!  

 
 
 
 
 
 
 
 

   The stray field energy tries to align the magnetization  
   parallel to the structure edges, and this leads to  
   inhomogeneous magnetization. 



4.2 Domain formation - calculation of energy G 
of a given configuration M 
 
 Reduction of the stray field energy while at the same 

time the exchange energy is increased due to domain 
formation.  

 

 
Figure: Reduction of stray field energy by formation of 

multiple domains with stray-field flux closure 
 
  



 
Figure: Monodomain and multidomain states in a sphere 

 
 Ferromagnetic sphere with radius r.  

 
 (i) The energy of a monodomain state is: Gi = Ed: 
 

 
 
 

 
For a homogenously magnetized sphere (5.4.7):  
 
N = -1/3: 

 
 
 
 

(sphere volume V = 4/3πr3) 
  



 (ii) Reduction of the stray field energy (Ed) while at the 
same time the exchange energy (EA) is increased due to 
domain formation.  
 

The energy of the four quadrant state (ii) is: Gii = 
EExchange (the stray field energy is nearly 0, but there is 
exchange energy at the domain boundaries (domain 
walls)): 

 

 

 
 

(with σDW the energy per unit area of the domain wall in 
the sphere). 

 
 The configuration (i) is more favorable than (ii), if:  

 
 
 
 
 

 
 Due to the scaling of the energy terms, the monodomain 

state is energetically favourable for small structures.  For 
realistic values one obtains rcrit = 10-7m.  
 

  



4.3 Domain formation - inhomogeneous M 
 

 
Figure: Possible magnetization configurations of a sphere 

 
 We can now calculate for the different magnetization 

configurations (a)-(c), (i)-(iii) the energy and determine 
the energetically most favourable configuration.  

 
 But have we guessed the configuration and possibly 

overlooked an even more favourable configuration?  
 
 It would be better to directly calculate the optimum 

configuration, which can be done analytically for instance 
for a domain wall (see exercise)  
  


