
5. Dynamics (if there is time, otherwise in the 
magnetism lecture course) 
 
 So far, only static properties have been treated 

(magnetization configuration, etc.) and usually without 
the application of an external field B0.  

 
 But what is happening if a field is applied and how does 

the magnetization switch from one equilibrium to 
another?  What happens during the switching process?  

 
 Now investigation of nonequilibrium conditions, which 

change with time.  
 
 Dynamically processes in ferromagnetic materials are of 

considerable interest because there are measurement 
methods that are based on this dynamics (ferromagnetic 
resonance, Brillouin scattering, nuclear magnetic spin 
resonance, etc.), but there are also important 
applications such as fast data storage, medical 
technology, etc., based on magnetization dynamics. 

 
  



 A spin behaves as angular momentem (it follows the 
quantum mechanical commutation relations for an 
angular momentum):  

 
 

 
 The magnetization is:  
 

 
 

(with g the Landé Factor, approximately 2 for Fe, Ni, Co 
due to spin moment) 

 
 An external field exerts a torque on the spin: (derivation 

see course on magnetism in the next semester): 
 

  



 Quantum mechanics: Heisenberg equation of motion: 
(Heisenberg: time evolution of observables) 
(Schrödinger: time evolution of states) 

 
 
 

(last term = 0 if operator  is not explicitly time 
dependent) 

 
 For a spin: 

 
 
 

(  not explicitly time dependent) 
 

 Now insert the Hamiltonian : 
 

 This yields (derivation see magnetism lecture course):  
 

 
 

  



 Transition to classical magnetization via Ehrenfest 
theorem:  

 
 

 
 

with  for electrons (g = 2 for spin,  
g = 1 for orbit, g ≈ 2,2 realistically for 3d metals). 
 

 This is the fundamental equation for the precessional 
motion of the magnetization in an external field.  

 
 But this does not contain a change of the energy G, since 

M·B always stays constant, so this cannot describe a 
system on its way to equilibrium.  

 

 
Figure: Precession of magnetic a moment in an applied 

field H 
  



5.1 Dynamics - micromagnetics 
 
 The effectively acting field Beff contains different terms:  
 

 
 

   With: 
 

 
 
 To introduce dissipation, and therefore a change of the 

energy analogous to mechanical friction, a damping term 
is introduced which is proportional to the generalized 
velocities dm/dt:  

 
 

 
 In addition to precession this “Landau, Lifschitz and 

Gilbert equation (LLG)” also describes an alignment of 
the magnetization in the effective field, so the 
magnetization gradually moves on a spiral trajectory 
towards the direction of the effective field. 
 

 The strength of this damping is described by the 
phenomenological parameter α (which includes, for 
instance, eddy currents).  

 



 
Figure: Precession of magnetic moment without (left) and 

with (right) damping 
 

 This implicit LLG equation can be transformed into an 
explicit form with different constants (the Landau-
Lifschitz (LL) equation, see derivation):  

 
 

  



5.2 Dynamics - monodomain systems 
 
 The LLG respectively the LL equation gives us a law for 

the time evolution of the magnetization.  For instance we 
can now model the time evolution of a Stoner-Wohlfarth 
system (so called coherent or homogeneous rotation).  

 
 The magnetization lies along the x-axis.  
 
 A field is applied: Bx = -800Oe, Bz = -70Oe  
 
 The magnetization first turns in the -y direction, and 

then in the +z direction and spirals into the field 
direction (animation).  

 
Figure: Simulated reversal of a macro spin (Stoner-

Wohlfarth system) with different damping terms 
 

 At lower (more realistic) damping (0.01 to 0.1) the 
precession becomes more important and therefore the 
magnetization direction rotates more often around the 
field direction before it eventually settles in that 



direction.  
 

 The precession of a monodomain system can be 
visualized with OOMMF. One sees this in the x- and y-
components, which are shifted 90° from the 
magnetization a damped precession.  

 
 OOMMF examples for the precession of a monodomain 

system:  
 

 
Figure: Precession of a monodomain systems described by 

macrospin dynamics 
 
  



 Experimentally one can determine the precession 
frequency.  

 
 The frequency is a function of the applied field in the 

plane of the sample which increases with increasing field 
5.7.1 (continuous line shown as the fit).  

 

  
Figure: Experimentally measured precession and damping 
for various applied fields (left), resonance frequency as a 
function of an externally applied field (right) [T. Silva, J. 

Appl. Phys. 85, 7849 (1999)] 
 

  



 Experimentally one can also determine the damping.  
 
 Here we see that a Cr or Pd layer on top of the magnetic 

layer leads to a stronger damping.  
 
 Reasons for this stronger damping are spin pumping (see 

references).  
 
 The dip at t = 0 is not yet fully understood.  
 

  
Figure: Experimental determination of precession and 
damping for Ni with Cr and Pd capping layers (left) [M. 

Muenzenberg, M. Kläui et al., (unpublished)], experimental 
determination of precession and damping for Fe with and 
without a Pd capping layer (right) [G. Woltersdorf et al., 

Phys. Rev. Lett. 95, 37401 (2005)] 
 

  


